LNCMI
LNCMI

Systèmes de basse dimensionnalité et transport quantique

Our researches focus on the experimental study of the properties of low dimensional electronic systems. They mainly aim at characterizing two dimensional electron 2 gases (2DEG) in various semi-conducting structures (GaAs, Si, …) or atomically thin layered materials such as graphene, van der Waals magnets, transition metal dichalcogenides (semiconducting or metallic), etc… Among the numerous issues raised by these systems, we fixed a particular attention on the quantum Hall regime, and its associated collective states and spin properties. This includes ferromagnetic quantum Hall states, fractional quantum Hall states (associated with non-trivial “anyonic” and “non-abelian anyonic” quantum statistics), electron (Wigner-like) solids, quantum spin Hall phase, Valley physics, etc… We additionally pay a great attention to “topological insulators” essentially Bi or Se based systems. .

Our main experimental techniques are transport, capacitance, magnetization, and magnetic resonances measurements involving low temperatures (mK), high magnetic fields (36T), and light (1MHz-10 THz) excitation.

NOUS RECRUVONS UN NOUVEAU POSTDOC sur les statistiques quantiques non-abéliennes dans le graphène ! !! LIEN ICI

Autres postes de postdoc disponibles: contactez Benjamin Piot ( benjamin.piot [at ] lncmi.cnrs.fr )

Membres de l’équipe

Benjamin Piot is a CNRS researcher specialized in the physics of 2D electron systems, and has been leading the "Low dimensional systems and quantum transport" group since 2012. He has developed several experiments in extreme conditions, with magnetic fields larger than 30 T and at millikelvin temperatures. His group has a unique expertise in resistively-detected magnetic resonances (ESR, NMR) on nanostructures.

The Graphite Princess and the Moiré Pea

Graphite is made out of a stacking of layers of carbon atoms arranged in a honeycomb lattice. This...

Dimensional reduction, quantum Hall effect and layer parity in graphite films

The quantum Hall effect (QHE) originates from discrete Landau levels forming in a two-dimensional...

Thèmes de recherche

New quantum statistics in the quantum Hall regime

We have been working on the physics of the filling factor nu= 5/2 fractional quantum Hall effect. The wave function which is supposed to describe this state theoretically, the so-called Moore-Read state, bears unique “non-abelian anyonic” quantum statistics which would underly a new paradigm for topological (fault tolerant) quantum computation. However, a verification of another key property of the Moore-Read state, which is the p-wave symmetry of the electron wave function at nu= 5/2, had so far been missing. Using Resistively Detected Nuclear Magnetic Resonance (RDNMR) at very low temperature, we have unravelled the sought-after spin polarization of this state and shown that, in agreement with the Moore-Read theory, electron are fully spin polarized in the nu= 5/2 fractional quantum Hall state. This results is a necessary condition for the validity of the Moore-Read theory, and interferometric experiments will now have to determine the exact nature of quantum statistics in the nu= 5/2 state.
M. Stern, B. A. Piot et al, “NMR Probing of the Spin Polarization of the ν = 5/2 Quantum Hall State” Phys. Rev. Lett. 108, 066810 (2012).

Nowadays, bilayer graphene has emerged as a new platform to study such statistics and a new project is being launched in 2025 for similar studies

Magnons in van der Waals magnets

Thanks to a newly developed phase-sensitive resistive detection technique of spin resonance, we can perform microwave absorption studies in a large frequency/magnetic field/temperature phase space (see techniques below). Such experiments enable us to determine the low-energy magnon excitations spectrum of various van der Waals magnets. The example of CrSBr is given in the figure below

Magnetic-field dependence of two low-energy magnon modes in CrSBr measured in an applied field parallel to the three principal crystallographic directions.
Such spectra reveal anisotropies, magnetic transitions, and a strong magnon-magnon coupling in this material.

Valley degeneracy in silicon

Les électrons des systèmes 2D à base de silicium possèdent un degré de liberté « vallée », tout comme dans les systèmes 2D découverts plus récemment, tels que le graphène ou les dichalcogénures de métaux de transition. Cette double dégénérescence est souvent considérée comme une source de complication pour les perspectives de calcul quantique dans les systèmes de « Q-bits » en silicium, mais elle a également été présentée plus récemment comme un atout pour les applications potentielles de la « valleytronics », où le degré de liberté de la vallée des états quantiques peut être contrôlé et exploité, de la même manière que les spins dans la « spintronics ». Le fractionnement de la vallée par une seule particule est loin d’être entièrement compris. En effet, la possibilité d’accorder la polarisation de vallée des électrons 2D dans le silicium dépend en grande partie de la structure et de la nature de l’ensemble du dispositif. Par exemple, la division de la vallée à l’interface des MOSFETs habituels Si/SiO2(Metal-Oxide-Field-Effect-Transistor), où SiO2est un oxyde thermique, peut être de l’ordre de quelques meV. Dans les hétérojonctions Si/SiGe , elle est réduite à l’ordre de 10-100 µeV . Motivés par la compréhension des séparations de vallée dépendant de l’interface dans le silicium 2D, nous étudions la polarisation de vallée dans les MOSFETS au silicium à double fermeture impliquant une autre interface : celle entre le silicium et un diélectrique « high-k » qui est omniprésent dans les MOSFET commerciaux modernes au silicium.

Certains résultats de nos recherches viennent d’être publiés :

« Large accordabilité électrique de la division de la vallée dans un puits quantique de silicium sur isolateur à double grille » , Nano Lett. 2025, 25, 36, 13557-13562.

mK specific heat of 2D systems

We are developing novel thermodynamic tools for the experimental study two-dimensional electron systems in the quantum Hall regime. This project is performed in collaboration with C2N (Orsay) and Neel institute (Grenoble), and involves high-mobility suspended 2DEG with embedded sensitive thermometry.

Techniques

High B / low T transport on nano devices

  • Transport measurements in resistive magnets up to B=36 T (T down to 300 mK) or B=30 T (T down to 50 mK)
  • B=9T wet dilution fridge with electron temperatures down to T=14 mK
  • B=16 T setup with variable temperature insert (T=1.24 K- 300 K)
Resistively-detected microwave absorptions

Microwave absorption can be studied in a large continuous frequency range (f=1-220 GHz) for temperatures between 1.3 K and 60 K, and under magnetic fields up to 16 T (30 T under development).

Reference: C. W. Cho, A. Pawbake, N. Aubergier, A. L. Barra, K. Mosina, Z. Sofer, M. E. Zhitomirsky, C. Faugeras, and B. A. Piot, Microscopic parameters of the van der waals crsbr antiferromagnet from microwave absorption experiments, Phys. Rev. B 107, 094403 (2023).

Resistively-detected NMR in low dimensional systems

We have a long tradition in developing resistively-detected NMR techniques, see for example: M. Stern, B. A. Piot, et al, Phys. Rev. Lett. 108, 066810 (2012) and B. A. Piot et al, Phys. Rev. Lett. 116, 106801 (2016).

Publications

Publications du groupe LDS référencées (2012- Sept 2025)
  • N. Aubergier, V. T. Renard, S. Barraud, K. Takashina, et B. A. Piot, Wide electrical tunability of the valley splitting in a doubly gated silicon-on-insulator quantum well, Nano Lett. 25, 13557 (2025).
  • A. Kazakov, V. V. Volobuev, C.-W. Cho, B. A. Piot, Z. Adamus, T. Wojciechowski, T. Wojtowicz, G. Springholz, et T. Dietl, Topological phase diagram and quantum magnetotransport effects in (pb,sn)se quantum wells with magnetic barriers (pb,eu)se, Phys. Rév. B 111, 245419 (2025).
  • Y. Fu, H. Lohan, M. Righetto, Y.-T. Huang, S. R. Kavanagh, C.-W. Cho, S. J. Zelewski, Y. W. Woo, H. Demetriou, M. A. McLachlan, S. Heutz, B. A. Piot, D. O. Scanlon, A. Rao, L. M. Herz, A. Walsh, and R. L. Z. Hoye, Structural and electronic features enabling delocalized charge-carriers in cusbse2, Nature Communications 16, 65 (2025).
  • S.-K. Bac, F. Le Mardel´e, J. Wang, M. Ozerov, K. Yoshimura, I. Mohelsk´y, X. Sun, B. A. Piot, S. Wimmer, A. Ney, T. Orlova, M. Zhukovskyi, G. Bauer, G. Springholz, X. Liu, M. Orlita, K. Park, Y.-T. Hsu, and B. A. Assaf, Probing berry curvature in magnetic topological insulators through resonant infrared magnetic circular dichroism, Phys. Rev. Lett. 134, 016601 (2025).
  • D. Jana, D. Vaclavkova, I. Mohelsky, P. Kapuscinski, C. W. Cho, I. Breslavetz, M. Bialek, J.-P. Ansermet, B. A. Piot, M. Orlita, C. Faugeras, and M. Potemski, Magnon gap excitations in van der waals antiferromagnet mnpse3, Scientific Reports 14, 17502 (2024).
  • I. Mohelsky, J. Wyzula, F. Le Mardel´e, F. Abadizaman, O. Caha, A. Dubroka, X. D. Sun, C. W. Cho, B. A. Piot, M. F. Tanzim, I. Aguilera, G. Bauer, G. Springholz, and M. Orlita, Electronic band structure of sb2te3, Phys. Rev. B 109, 165205 (2024).
  • A. Pawbake, T. Pelini, I. Mohelsky, D. Jana, I. Breslavetz, C.-W. Cho, M. Orlita, M. Potemski, M.-A. Measson, N. P. Wilson, K. Mosina, A. Soll, Z. Sofer, B. A. Piot, M. E. Zhitomirsky, and C. Faugeras, Magneto-optical sensing of the pressure driven magnetic ground states in bulk crsbr, Nano Lett. 23, 9587 (2023).
  • C. Mullan, S. Slizovskiy, J. Yin, Z. Wang, Q. Yang, S. Xu, Y. Yang, B. A. Piot, S. Hu, T. Taniguchi, K. Watanabe, K. S. Novoselov, A. K. Geim, V. I. Fal’ko, and A. Mishchenko, Mixing of moiré-surface and bulk states in graphite, Nature 620, 756 (2023).
  • C. W. Cho, A. Pawbake, N. Aubergier, A. L. Barra, K. Mosina, Z. Sofer, M. E. Zhitomirsky, C. Faugeras, and B. A. Piot, Microscopic parameters of the van der waals crsbr antiferromagnet from microwave absorption experiments, Phys. Rev. B 107, 094403 (2023).
  • I. Mohelsky, J. Wyzula, B. A. Piot, G. D. Gu, Q. Li, A. Akrap, and M. Orlita, Temperature dependence of the energy band gap in zrte5: Implications for the topological phase, Phys. Rev. B 107, L041202 (2023).
  • Y Gul, S N Holmes, Chang-Woo Cho, B Piot, M Myronov, and M Pepper, “Two-dimensional localization in gesn,” Journal of Physics: Condensed Matter 34, 485301 (2022).
  • A. V. Ikonnikov, S. S. Krishtopenko, L. S. Bovkun, N. N. Mikhailov, S. A. Dvoretskii, B. A. Piot, M. Potemski, M. Orlita, F. Teppe, and V. I. Gavrilenko, “Origin of structure inversion asymmetry in double hgte quantum wells,” JETP Letters 116, 547–555 (2022).
  • Ipsita Das, Cheng Shen, Alexandre Jaoui, Jonah Herzog-Arbeitman, Aaron Chew, Chang-Woo Cho, Kenji Watanabe, Takashi Taniguchi, Benjamin A. Piot, B. Andrei Bernevig, and Dmitri K. Efetov, “Observation of reentrant correlated insulators and interaction-driven fermi-surface reconstructions at one magnetic flux quantum per moir´e unit cell in magic-angle twisted bilayer graphene,” Phys. Rev. Lett. 128, 217701 (2022).
  • Jan Wyzula, Xin Lu, David Santos-Cottin, Dibya Kanti Mukherjee, Ivan Mohelsky, Florian Le Mardel´e, Jiri Novak, Mario Novak, Raman Sankar, Yuriy Krupko, Benjamin A. Piot, Wei-Li Lee, Ana Akrap, Marek Potemski, Mark O. Goerbig, and Milan Orlita, “Lorentz-boost-driven magneto-optics in a dirac nodal-line semimetal,” Advanced Science 9, 2105720 (2022), https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202105720.
  • V. Zˇelezny´, V. Goian, J. Navr´atil, Cˇ. Draˇsar, M. Orlita, B. A. Piot, J. Prokleˇska, M. M´ıˇsek, J. Kaˇstil, and S. Kamba, “Anomalous temperature dependence of the effective mass in p-type Bi2Te3,” Phys. Rev. B 104, 165203 (2021).
  • Xiaobo Lu, Biao Lian, Gaurav Chaudhary, Benjamin A. Piot, Giulio Romagnoli, Kenji Watanabe, Takashi Taniguchi, Martino Poggio, Allan H. MacDonald, B. Andrei Bernevig, and Dmitri K. Efetov, “Multiple flat bands and topological hofstadter butterfly in twisted bilayer graphene close to the sec- ond magic angle,” Proceedings of the National Academy of Sciences 118 (2021), 10.1073/pnas.2100006118, https://www.pnas.org/content/118/30/e2100006118.full.pdf.
  • Shuigang Xu, Mohammed M. Al Ezzi, Nilanthy Balakrishnan, Aitor Garcia-Ruiz, Bonnie Tsim, Ciaran Mullan, Julien Barrier, Na Xin, Benjamin A. Piot, Takashi Taniguchi, Kenji Watanabe, Alexandra Carvalho, Artem Mishchenko, A. K. Geim, Vladimir I. Falko, Shaffique Adam, Antonio Helio Castro Neto, Kostya S. Novoselov, and Yanmeng Shi, “Tunable van hove singularities and correlated states in twisted monolayer-bilayer graphene,” Nature Physics 17, 619–626 (2021).
  • S. Polatkan, M. O. Goerbig, J. Wyzula, R. Kemmler, L. Z. Maulana, B. A. Piot, I. Crassee, A. Akrap, C. Shekhar, C. Felser, M. Dressel, A. V. Pronin, and M. Orlita, “Magneto-optics of a weyl semimetal beyond the conical band approximation: Case study of tap,” Phys. Rev. Lett. 124, 176402 (2020).
  • Louis Veyrat, Corentin D´eprez, Alexis Coissard, Xiaoxi Li, Fr´ed´eric Gay, Kenji Watanabe, Takashi Taniguchi, Zheng Han, Benjamin A. Piot, Hermann Sellier, and Benjamin Sac´ep´e, “Helical quantum hall phase in graphene on srtio3,” Science 367, 781–786 (2020), arxiv: https://arxiv.org/abs/1907.02299, https://science.sciencemag.org/content/367/6479/781.full.pdf.
  • Tuyen Nguyen, Adib Tavakoli, Sebastien Triqueneaux, Rahul Swami, Aki Ruhtinas, Jeremy Gradel, Pablo Garcia- Campos, Klaus Hasselbach, Aviad Frydman, Benjamin Piot, Mathieu Gibert, Eddy Collin, and Olivier Bourgeois, “Niobium nitride thin films for very low temperature resistive thermometry,” Journal of Low Temperature Physics 197, 348–356 (2019), arxiv XX.
  • L.S. Bovkun, A.V. Ikonnikov, V.Ya. Aleshkin, K.V. Maremyanin, N.N. Mikhailov, S.A. Dvoretskii, S.S. Krishtopenko, F. Teppe, B.A. Piot, M. Potemski, M. Orlita, and V.I. Gavrilenko, “Magnetospectroscopy of double hgte/cdhgte qws with inverted band structure in high magnetic fields up to 30 t,” Opto-Electronics Review 27, 213 – 218 (2019).
  • L. S. Bovkun, A. V. Ikonnikov, V. Ya. Aleshkin, M. Orlita, M. Potemski, B. A. Piot, S. A. Dvoretskii, N. N. Mikhailov, and V. I. Gavrilenko, “Magnetoabsorption in hgcdte/cdhgte quantum wells in tilted magnetic fields,” JETP Letters 109, 191–197 (2019).
  • Jiangxiazi Lin, Tianyi Han, Benjamin A. Piot, Zefei Wu, Shuigang Xu, Gen Long, Liheng An, Patrick Cheung, Peng- Peng Zheng, Paulina Plochocka, Xi Dai, Duncan K. Maude, Fan Zhang, and Ning Wang, “Determining interaction enhanced valley susceptibility in spin-valley-locked mos2,” Nano Letters, Nano Lett. 19, 1736–1742 (2019).
  • L S Bovkun, A V Ikonnikov, V Ya Aleshkin, K E Spirin, V I Gavrilenko, N N Mikhailov, S A Dvoretskii, F Teppe, B A Piot, M Potemski, and M Orlita, “Landau level spectroscopy of valence bands in HgTe quantum wells: effects of symmetry lowering,” Journal of Physics: Condensed Matter 31, 145501 (2019).
  • Jun Yin, Sergey Slizovskiy, Yang Cao, Sheng Hu, Yaping Yang, Inna Lobanova, Benjamin A. Piot, Seok-Kyun Son, Servet Ozdemir, Takashi Taniguchi, Kenji Watanabe, Kostya S. Novoselov, Francisco Guinea, A. K. Geim, Vladimir Falko, and Artem Mishchenko, “Dimensional reduction, quantum hall effect and layer parity in graphite films,” Nature Physics 15, 437–442 (2019).
  • L. S. Bovkun, K. V. Maremyanin, A. V. Ikonnikov, K. E. Spirin, V. Ya. Aleshkin, M. Potemski, B. A. Piot, M. Orlita, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Magnetooptics of hgte/cdte quantum wells with giant rashba splitting in magnetic fields up to 34 t,” Semiconductors 52, 1386–1391 (2018).
  • Mahabub A. Bhuiyan, Zakhar R. Kudrynskyi, Debarati Mazumder, Jake D. G. Greener, Oleg Makarovsky, Christopher J. Mellor, Evgeny E. Vdovin, Benjamin A. Piot, Inna I. Lobanova, Zakhar D. Kovalyuk, Marina Nazarova, Artem Mishchenko, Kostya S. Novoselov, Yang Cao, Laurence Eaves, Go Yusa, and Amalia Patane, “Photoquantum hall effect and light-induced charge transfer at the interface of graphene/inse heterostructures,” Advanced Functional Materials 29, 1805491 (2018).
  • L. S. Bovkun, A. V. Ikonnikov, V. Ya. Aleshkin, S. S. Krishtopenko, N. N. Mikhailov, S. A. Dvoretskii, M. Potemski, B. Piot, M. Orlita, and V. I. Gavrilenko, “Polarization-sensitive fourier-transform spectroscopy of hgte/cdhgte quantum wells in the far infrared range in a magnetic field,” JETP Letters 108, 329–334 (2018).
  • W. Desrat, S. S. Krishtopenko, B. A. Piot, M. Orlita, C. Consejo, S. Ruffenach, W. Knap, A. Nateprov, E. Arushanov, and F. Teppe, “Band splitting in cd3as2 measured by magnetotransport,” Phys. Rev. B 97, 245203 (2018).
  • Hugo Henck, Jose Avila, Zeineb Ben Aziza, Debora Pierucci, Jacopo Baima, Betu¨l Pamuk, Julien Chaste, Daniel Utt, Miroslav Bartos, Karol Nogajewski, Benjamin A. Piot, Milan Orlita, Marek Potemski, Matteo Calandra, Maria C. Asensio, Francesco Mauri, Cl´ement Faugeras, and Abdelkarim Ouerghi, “Flat electronic bands in long sequences of rhombohedral-stacked graphene,” Phys. Rev. B 97, 245421 (2018).
  • V. V. Rumyantsev, L. S. Bovkun, A. M. Kadykov, M. A. Fadeev, A. A. Dubinov, V. Ya. Aleshkin, N. N. Mikhailov, S. A. Dvoretsky, B. Piot, M. Orlita, M. Potemski, F. Teppe, S. V. Morozov, and V. I. Gavrilenko, “Magnetooptical studies and stimulated emission in narrow gap hgte/cdhgte structures in the very long wavelength infrared range,” Semiconductors 52, 436–441 (2018).
  • M. Hakl, S. Tchoumakov, I. Crassee, A. Akrap, B. A. Piot, C. Faugeras, G. Martinez, A. Nateprov, E. Arushanov, F. Teppe, R. Sankar, Wei-li Lee, J. Debray, O. Caha, J. Nov´ak, M. O. Goerbig, M. Potemski, and M. Orlita, “Energy scale of dirac electrons in cd3as2,” Phys. Rev. B 97, 115206 (2018).
  • W Desrat, M Moret, O Briot, T-H Ngo, B A Piot, B Jabakhanji, and B Gil, “Superconducting ga/gase layers grown by van der waals epitaxy,” Materials Research Express 5, 045901 (2018).
  • S. Ruffenach, S. S. Krishtopenko, L. S. Bovkun, A. V. Ikonnikov, M. Marcinkiewicz, C. Consejo, M. Potemski, B. Piot, M. Orlita, B. R. Semyagin, M. A. Putyato, E. A. Emel’yanov, V. V. Preobrazhenskii, W. Knap, F. Gonzalez-Posada, G. Boissier, E. Tourni´e, F. Teppe, and V. I. Gavrilenko, “Magnetoabsorption of dirac fermions in inas/gasb/inas “three-layer” gapless quantum wells,” JETP Letters 106, 727–732 (2017).
  • M. Hakl, L. Ohnoutek, M. Veis, . Draar, A. Materna, G. Strzelecka, A. Hruban, A. Slobodeniuk, B. A. Piot, G. Martinez, M. Potemski, and M. Orlita, “The saturation of interband faraday rotation in bi2se3,” EPL (Europhysics Letters) 117, 47006 (2017).
  • G. Martinez, B. A. Piot, M. Hakl, M. Potemski, Y. S. Hor, A. Materna, S. G. Strzelecka, A. Hruban, O. Caha, J. Novk, A. Dubroka, . Draar, and M. Orlita, “Determination of the energy band gap of bi2se3,” Scientific Reports7, 6891– (2017).
  • A. Akrap, M. Hakl, S. Tchoumakov, I. Crassee, J. Kuba, M. O. Goerbig, C. C. Homes, O. Caha, J. Nov´ak, F. Teppe, W. Desrat, S. Koohpayeh, L. Wu, N. P. Armitage, A. Nateprov, E. Arushanov, Q. D. Gibson, R. J. Cava, D. van der Marel, B. A. Piot, C. Faugeras, G. Martinez, M. Potemski, and M. Orlita, “Magneto-optical signature of massless kane electrons in cd3as2,” Phys. Rev. Lett. 117, 136401 (2016).
  • K. Ganzhorn, J. Barker, R. Schlitz, B. A. Piot, K. Ollefs, F. Guillou, F. Wilhelm, A. Rogalev, M. Opel, M. Althammer, S. Gepr¨ags, H. Huebl, R. Gross, G. E. W. Bauer, and S. T. B. Goennenwein, “Spin hall magnetoresistance in a canted ferrimagnet,” Phys. Rev. B 94, 094401 (2016).
  • B. A. Piot, W. Desrat, D. K. Maude, M. Orlita, M. Potemski, G. Martinez, and Y. S. Hor, “Hole Fermi surface in Bi2Se3 probed by quantum oscillations,” Phys. Rev. B 93, 155206 (2016).
  • B. A. Piot, W. Desrat, D. K. Maude, D. Kazazis, A. Cavanna, and U. Gennser, “Disorder-induced stabilization of the quantum hall ferromagnet,” Phys. Rev. Lett. 116, 106801 (2016).
  • L. Ohnoutek, M. Hakl, M. Veis, B. A. Piot, C. Faugeras, G. Martinez, M. V. Yakushev, R. W. Martin, . Draar, A. Materna, G. Strzelecka, A. Hruban, M. Potemski, and M. Orlita, “Strong interband Faraday rotation in 3D topological insulator Bi2Se3,” Scientific Reports 6, 19087– (2016).
  • J. R. Wallbank, D. Ghazaryan, A. Misra, Y. Cao, J. S. Tu, B. A. Piot, M. Potemski, S. Pezzini, S. Wiedmann, U. Zeitler, T. L. M. Lane, S. V. Morozov, M. T. Greenaway, L. Eaves, A. K. Geim, V. I. Fal’ko, K. S. Novoselov, and A. Mishchenko, “Tuning the valley and chiral quantum state of dirac electrons in van der waals heterostructures,” Science 353, 575–579 (2016).
  • J. Kunc, B. A. Piot, D. K. Maude, M. Potemski, R. Grill, C. Betthausen, D. Weiss, V. Kolkovsky, G. Karczewski, and T. Wojtowicz, “Magnetoresistance quantum oscillations in a magnetic two-dimensional electron gas,” Phys. Rev. B 92, 085304 (2015).
  • T. Ouisse, L. Shi, B. A. Piot, B. Hackens, V. Mauchamp, and D. Chaussende, “Magnetotransport properties of nearly-free electrons in two-dimensional hexagonal metals and application to the Mn+1aXn phases,” Phys. Rev. B 92, 045133 (2015).
  • V. T. Renard, B. A. Piot, X. Waintal, G. Fleury, D. Cooper, Y. Niida, D. Tregurtha, A. Fujiwara, Y. Hirayama, and K. Takashina, “Valley polarization assisted spin polarization in two dimensions,” Nat Commun 6, – (2015).
  • B. Sacépé, J. Seidemann, M. Ovadia, I. Tamir, D. Shahar, C. Chapelier, C. Strunk, and B. A. Piot, “High-field termination of a cooper-pair insulator,” Phys. Rev. B 91, 220508 (R) (2015).
  • M. Orlita, B. A. Piot, G. Martinez, N. K. Sampath Kumar, C. Faugeras, M. Potemski, C. Michel, E. M. Hankiewicz, T. Brauner, Cˇ. Draˇsar, S. Schreyeck, S. Grauer, K. Brunner, C. Gould, C. Bru¨ne, and L. W. Molenkamp, “Magneto-optics of massive dirac fermions in bulk bi2se3,” Phys. Rev. Lett. 114, 186401 (2015).
  • S. Mukhopadhyay, S. Kr¨amer, H. Mayaffre, H. F. Legg, M. Orlita, C. Berthier, M. Horvati´c, G. Martinez, M. Potem- ski, B. A. Piot, A. Materna, G. Strzelecka, and A. Hruban, “Hyperfine coupling and spin polarization in the bulk of the topological insulator bi2se3,” Phys. Rev. B 91, 081105 (R) (2015).
  • Minju Shin, Ming Shi, M. Mouis, A. Cros, E. Josse, S. Mukhopadhyay, B. Piot, Gyu-Tae Kim, and G. Ghibaudo, “Experimental and theoretical investigation of magnetoresistance from linear regime to saturation in 14-nm fd-soi mos devices,” Electron Devices, IEEE Transactions on 62, 3–8 (2015).
  • W Desrat, B A Piot, D K Maude, Z R Wasilewski, M Henini, and R Airey, “W line shape in the resistively detected nuclear magnetic resonance,” Journal of Physics: Condensed Matter 27, 275801 (2015).
  • S Pezzini, C Cobaleda, B A Piot, V Bellani, and E Diez, “Canted antiferromagnetic to ferromagnetic phase transition in bilayer graphene,” Journal of Physics: Conference Series 647, 012044 (2015).
  • Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, and R. V. Gorbachev, “Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere,” Nano Letters 15, 4914–4921 (2015).
  • C. Betthausen, P. Giudici, A. Iankilevitch, C. Preis, V. Kolkovsky, M. Wiater, G. Karczewski, B. A. Piot, J. Kunc, M. Potemski, T. Wojtowicz, and D. Weiss, “Fractional quantum hall effect in a dilute magnetic semiconductor,” Phys. Rev. B 90, 115302 (2014).
  • S. Pezzini, C. Cobaleda, B. A. Piot, V. Bellani, and E. Diez, “Critical point for the canted antiferromagnetic to ferromagnetic phase transition at charge neutrality in bilayer graphene,” Phys. Rev. B 90, 121404 (R) (2014).
  • G. L. Yu, R. V. Gorbachev, J. S. Tu, A. V. Kretinin, Y. Cao, R. Jalil, F. Withers, L. A. Ponomarenko, B. A. Piot, M. Potemski, D. C. Elias, X. Chen, K. Watanabe, T. Taniguchi, I. V. Grigorieva, K. S. Novoselov, V. I. Fal/’ko, A. K. Geim, and A. Mishchenko, “Hierarchy of hofstadter states and replica quantum hall ferromagnetism in graphene superlattices,” Nat Phys 10, 525–529 (2014).
  • Minju Shin, Ming Shi, Mireille Mouis, Antoine Cros, Emmanuel Josse, Sutirha Mukhopadhyay, Benjamin Piot, Gyu-Tae Kim, and Grard Ghibaudo, “Magnetoresistance mobility characterization in advanced fd-soi n-mosfets,” Solid-State Electronics 103, 229 – 235 (2014).
  • O.I. Aydin, M. Mouis, A. Cresti, B.A. Piot, T. Hallam, J.L. Thomassin, and G.S. Duesberg, “Low temperature char- acterization of cvd graphene devices fabricated with a scalable process route,” in Proceedings of the11th International Workshop on low temperature electronics (WOLTE) (2014) pp. 89–92.
  • M.K. Joo, M. Mouis, B. Piot, S. Barreau, M. Shin, Kim G.T., and G. Ghibaudo, “Low-temperature characterization of hall and effective mobility in junctionless transistors,” in Proceedings of the11th International Workshop on low temperature electronics (WOLTE) (2014) pp. 85–88.
  • Przemyslaw Leszczynski, Zheng Han, Aurelien A. L. Nicolet, Benjamin A. Piot, Piotr Kossacki, Milan Or- lita, Vincent Bouchiat, Denis M. Basko, Marek Potemski, and Clement Faugeras, “Electrical switch to the resonant magneto-phonon effect in graphene,” Nano Letters 14, 1460–1466 (2014), pMID: 24490748, http://dx.doi.org/10.1021/nl404588g.
  • D.K. Maude, B. Piot, and W. Desrat, “The contact hyperfine interaction and the integer and fractional quantum hall effects,” in Proceedings of the11th International Workshop on low temperature electronics (WOLTE) (2014) pp. 49–52.
  • W. Desrat, B. A. Piot, S. Kr¨amer, D. K. Maude, Z. R. Wasilewski, M. Henini, and R. Airey, “Dispersive line shape in the vicinity of the ν=1 quantum hall state: Coexistence of knight-shifted and unshifted resistively detected nmr responses,” Phys. Rev. B 88, 241306 (R) (2013).
  • K. Takashina, Y. Niida, V. T. Renard, B. A. Piot, D. S. D. Tregurtha, A. Fujiwara, and Y. Hirayama, “Spin and valley polarization dependence of resistivity in two dimensions,” Phys. Rev. B 88, 201301 (R) (2013).
  • J. A. Alexander-Webber, A. M. R. Baker, T. J. B. M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin, R. Yaki- mova, B. A. Piot, D. K. Maude, and R. J. Nicholas, “Phase space for the breakdown of the quantum hall effect in epitaxial graphene,” Phys. Rev. Lett. 111, 096601 (2013).
  • L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim, “Cloning of Dirac fermions in graphene superlattices,” NATURE 497, 594–597 (2013).
  • S. I. Vedeneev, B. A. Piot, D. K. Maude, and A. V. Sadakov, “Temperature dependence of the upper critical field of FeSe single crystals,” Phys. Rev. B 87 (2013).
  • M Floser, B A Piot, CL Campbell, DK Maude, M Henini, R Airey, ZR Wasilewski, S Florens, and T Champel, “Classical percolation fingerprints in the high temperature regime of the quantum hall effect,” New Journal of Physics 15, 083027 (2013).
  • Sung Jae Chang, Sorin Cristoloveanu, Maryline Bawedin, Jong Hyun Lee, Jung Hee Lee, S. Mukhopadhyay, and B. A. Piot, “Magnetoresistance measurements and unusual mobilitiy behavior in FD mosfets,” in Proceedings of the European Solid-State Device Research Conference, ESSDERC 2013, Bucharest, Romania, September 16-20, 2013 (2013) pp. 296–299.
  • S. I. Vedeneev, B. A. Piot, and D. K. Maude, “Gap like structure in a nonsuperconducting layered oxycarbonate Bi2+xSr4−xCu2CO3O8+δ single crystal,” PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS 483, 40–44 (2012).
  • P. Plochocka, P. Y. Solane, R. J. Nicholas, J. M. Schneider, B. A. Piot, D. K. Maude, O. Portugall, and G. L. J. A. Rikken, “Origin of electron-hole asymmetry in graphite and graphene,” Phys. Rev. B 85, 245410 (2012).
  • B. A. Piot and D. K. Maude, “Magnetic-field-induced Stoner transition in a dilute quantum Hall system,” Phys. Rev. B 85, 195309 (2012).
  • J. M. Schneider, B. A. Piot, I. Sheikin, and D. K. Maude, “Using the de Haas-van Alphen Effect to Map Out the Closed Three-Dimensional Fermi Surface of Natural Graphite,” Phys. Rev. Lett. 108, 117401 (2012).
  • M. Stern, B. A. Piot, Y. Vardi, V. Umansky, P. Plochocka, D. K. Maude, and I. Bar-Joseph, “NMR Probing of the Spin Polarization of the ν = 5/2 Quantum Hall State,” Phys. Rev. Lett. 108, 066810 (2012).
B.A. Piot refered publication pre 2012
  • J. Kunc, K. Kowalik, F. J. Teran, P. Plochocka, B. A. Piot, D. K. Maude, M. Potemski, V. Kolkovsky, G. Karczewski, and T. Wojtowicz, “Enhancement of the spin gap in fully occupied two-dimensional Landau levels,” Physical Review B 82, 115438 (2010).
  • B. A. Piot, J. Kunc, M. Potemski, D. K. Maude, C. Betthausen, A. Vogl, D. Weiss, G. Karczewski, and T. Wojtowicz, “Fractional quantum Hall effect in CdTe,” Physical Review B 82, 081307 (R) (2010).
  • Xiaoqing Zhou, B. A. Piot, M. Bonin, L. W. Engel, S. Das Sarma, G. Gervais, L. N. Pfeiffer, and K. W. West, “Colossal magnetoresistance in an ultraclean weakly interacting 2d fermi liquid,” Phys. Rev. Lett. 104, 216801 (2010).
  • S. I. Vedeneev, B. A. Piot, and D. K. Maude, “Magnetic field dependence of the superconducting energy gap in Bi2Sr2CaCu2O8+δ probed using break-junction tunneling spectroscopy,” Physical Review B 81, 054501 (2010).
  • Walt A de Heer, Claire Berger, Xiaosong Wu, Mike Sprinkle, Yike Hu, Ming Ruan, Joseph A Stroscio, Phillip N First, Robert Haddon, Benjamin Piot, Clement Faugeras, Marek Potemski, and Jeong-Sun Moon, “Epitaxial graphene electronic structure and transport,” Journal of Physics D 43, 374007 (2010).
  • C. R. Dean, B. A. Piot, G. Gervais, L. N. Pfeiffer, and K. W. West, “Current-induced nuclear-spin activation in a two-dimensional electron gas,” Phys. Rev. B 80, 153301 (2009).
  • B. A. Piot, D. K. Maude, U. Gennser, A. Cavanna, and D. Mailly, “Interplay among spin, orbital effects, and localization in a GaAs two-dimensional electron gas in a strong in-plane magnetic field,” Physical Review B 80, 115337 (2009).
  • B.A. Piot, C.R. Dean, G. Gervais, Z. Jiang, L. W. Engel, L. Pfeiffer, and K. West, “Distortion of the 2d wigner crystal into a ’quasi-3d’ insulator,” International Journal of Modern Physics B (IJMPB) 23, 2713–2717 (2009).
  • B. A. Piot, Z. Jiang, C. R. Dean, L. W. Engel, G. Gervais, L. N. Pfeiffer, and K. W. West, “Wigner crystallization in a quasi-three-dimensional electronic system,” Nat Phys 4, 936–939 (2008).
  • C. R. Dean, B. A. Piot, P. Hayden, S. Das Sarma, G. Gervais, L. N. Pfeiffer, and K. W. West, “Contrasting behavior of the 5 and 7 fractional quantum hall effect in a tilted field,” Phys. Rev. Lett. 101, 186806 (2008).
  • C. R. Dean, B. A. Piot, P. Hayden, S. Das Sarma, G. Gervais, L. N. Pfeiffer, and K. W. West, “Intrinsic Gap of the ν=5/2 Fractional Quantum Hall State,” Phys. Rev. Lett. 100, 146803 (2008).
  • C.R. Dean, B.A. Piot, L.N. Pfeiffer, K.W. West, and G. Gervais, “Resistively detected NMR in quantum Hall states: Investigation of the anomalous line shape near ν = 1 ,” 17th International Conference on Electronic Properties of Two-Dimensional Systems, Physica E 40, 990–994 (2008).
  • B. A. Piot, D. K. Maude, M. Henini, Z. R. Wasilewski, J. A. Gupta, U. Gennser, A. Cavanna, D. Mailly, R. Airey, and G. Hill, “Determination of the Landau level shape via the transition to the spin polarized state in the integer quantum Hall effect,” Physica E 40, 1200–1201 (2008), 17th International Conference on Electronic Properties of Two-Dimensional Systems, Genoa, Italy, Jul 15-20, 2007.
  • B. A. Piot, D. K. Maude, M. Henini, Z. R. Wasilewski, J. A. Gupta, K. J. Friedland, R. Hey, K. H. Ploog, U. Gennser, A. Cavanna, D. Mailly, R. Airey, and G. Hill, “Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors,” Physical Review B 75, 155332 (2007).
  • B. A. Piot, D. K. Maude, K. J. Friedland, R. Hey, K. H. Ploog, Z. R. Wasilewski, M. Henini, R. Airey, G. Hill, A. I. Toropov, U. Gennser, A. Cavanna, and D. Mailly, “Magnetic-field-induced Stoner transition in a quantum Hall ferromagnet at high filling factors,” in Physics of Semiconductors, Pts A and B , AIP Conference Proceedings, Vol. 893, edited by Jantsch, W and Schaffler, F (2007) pp. 651–652, 28th International Conference on the Physics of Semiconductors (ICPS-28), Vienna, Austria, Jul 24-28, 2006.
  • V. A. Chitta, W. Desrat, D. K. Maude, B. A. Piot, N. F. Oliveira, Jr., P. H. O. Rappl, A. Y. Ueta, and E. Abramof, “Integer quantum Hall effect in a PbTe quantum well,” Physica E 34, 124–127 (2006), 16th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-16), Albuquerque, NM, Jul 10-15, 2005.
  • B. A. Piot, D. K. Maude, M Henini, Z. R. Wasilewski, K. J. Friedland, R Hey, K. H. Ploog, A. I. Toropov, R Airey, and G Hill, “Quantum Hall ferromagnet at high filling factors: A magnetic-field-induced Stoner transition,” Physical Review B 72, 245325 (2005).
  • V. A. Chitta, W Desrat, D. K. Maude, B. A. Piot, N. F. Oliveira, P. H. O. Rappl, A. Y. Ueta, and E Abramof, “Multivalley transport and the integer quantum Hall effect in a PbTe quantum well,” Physical Review B 72, 195326 (2005).

B. A. Piot, D. K. Maude, Z. R. Wasilewski, K. J. Friedland, R Hey, K. H. Ploog, L Eaves, M Henini, R Airey, and G Hill, “Further evidence for a collapse of the exchange-enhanced spin splitting in two dimensional systems,” International Journal Of Modern Physics B 18, 3597–3602 (2004), 16th International Conference on High Magnetic Fields in Semiconductor Physics, Tallahassee, FL, Aug 02-06, 2004