Emplois et stages

Ci-dessous vous trouverez une liste de stages et d’emplois proposés au laboratoire.

Pour les stages, merci de contacter directement le responsable du stage qui vous intéresse. La liste n’est pas exhaustive ; n’hésitez pas à contacter stages-g@lncmi.cnrs.fr si un sujet qui ne figure pas dans nos offres de stages ou thèses vous intéresse pour vos études !

Nous proposons des stages de découverte du milieu professionnel prévus en classe de 3ème :

2 sessions sont organisées.
La première aura lieu du 20 au 24 novembre 2023.
La seconde aura lieu du 15 au 19 janvier 2024 (envoyez votre candidature + CV).

Nous proposons également un stage découverte pour les classes de 2nd,
cette session aura lieu durant le mois de juin 2024.
Dates non définies (envoyez votre candidature + CV).

Filtrer par
Stage 2nde
Stage 3ème
Stage M2

High temperature superconductors probed by NMR

In this Master project, we propose to perform nuclear magnetic resonance measurements in a high Tc cuprate superconductor in order to understand the competition between superconductivity and magnetic or charge ordering. The internship will take place in a team of several researchers and will offer a wide range of opportunities: handling of cryogenic fluids and magnetic fields, NMR measurements, data analysis.
Télécharger la fiche de l'offre

NMR investigation of low dimensional quantum spin systems

Quantum spin systems are insulating crystals containing regular array of atoms carrying spin S = 1/2 or 1, described by simple spin Hamiltonians. In low-dimensional model compounds, we study by Nuclear Magnetic Resonance (NMR), which is a microscopic probe to magnetism, the magnetic-field-induced "exotic" phases, such as the Bose-Einstein condensate, magnetization plateaus or spin-nematic phase.
Télécharger la fiche de l'offre

Photoluminescence properties of layered semiconductors under high pressure

Semiconducting materials with a layered structure have emerged recently as well-adapted platforms to implement flexible optoelectronic devices and are of high interest for photovoltaic applications. Among them, perovskites have triggered a particular interest because of their very efficient absorption/emission properties. We propose to investigate optical properties of perovskites while changing the interlayer distance and effective coupling by applying high hydrostatic pressure
Télécharger la fiche de l'offre

Superconducting nematic phases under stress

Stage M1 - M2 The proposed work consists in setting up a uniaxial pressure device, coupled to NMR measurements (a spectroscopic method whose principle is analogous to medical MRI), in order to study novel electronic phenomena in high temperature superconductors. This Master internship will take place in a team of several researchers and will offer a wide range of opportunities: tests and implementation of the pressure device, handling of cryogenic fluids and magnetic fields, NMR measurements, data analysis
Télécharger la fiche de l'offre

Thermodynamic investigations of the Quantum Critical Point in CeRh(1-x)IrxIn5

In the series of CeRh(1-x)IrxIn5 at zero magnetic field, the antiferromagnetic order is suppressed at the Quantum Critical Point corresponding to x c = 0.6, while superconductivity emerges above x ~ 0.3. The objective is to investigate the interplay of different types of magnetic orders and superconductivity under ma gnetic field by means of specific heat measurements down to the lowest temperature (~300 mK) for various values of x.
Télécharger la fiche de l'offre

Ultrasound in Quantum materials

Superconducting materials enable technologies that would otherwise be unfeasible or impossible, such as medical Magnetic Resonance Image scanners, magnetic confinement in the ITER fusion reactor, and the magnets directing charged particles at the CERN accelerators. The materials class with the best current prospects for superconducting applications are the cuprates, which hold the record for highest ambient pressure transition temperature (Tc)-about 150 K. Those materials also host one of the greatest enigma of modern physics: the pseudogap phase. Determining the nature and origin of this mysterious phase is key to understand the mechanism of high-Tc superconductivity.
Télécharger la fiche de l'offre