You may find a list of internship projects and jobs available at the LNCMI below.
For internship projects, please contact the project supervisor directly. The project list is non-exhaustive. Please send us an email at stages-g@lncmi.cnrs.fr if you are interested in doing an internship in a research area which is not listed below.
Filtrer par
CDD
Landau level spectroscopy in non-trivial topological insulators
Postdoctoral project at LNCMI-Toulouse
Télécharger la fiche de l'offre
M2 internship
High magnetic field ground state of the pseudogap phase in high-Tc cuprate superconductors
LNCMI-Grenoble - The internship project aims at exploring the link between slow magnetic fluctuations and quantum criticality in high-Tc cuprate superconductors by means of ultrasound and electronic transport measurements at low temperature and high magnetic fields.
Télécharger la fiche de l'offre
High temperature superconductors probed by NMR
M1 - M2 level. In this Master project, we propose to perform nuclear
magnetic resonance measurements in a high Tc cuprate
superconductor in order to understand the competition between superconductivity and magnetic or charge ordering.
The internship will take place in a team of several researchers and will offer a wide range of opportunities: handling of
cryogenic fluids and magnetic fields, NMR measurements, data analysis.
Télécharger la fiche de l'offre
NMR investigation of low dimensional quantum spin systems
Quantum spin systems are insulating crystals containing regular array of atoms carrying spin S = 1/2 or 1, described by
simple spin Hamiltonians. In low-dimensional model compounds, we study by Nuclear Magnetic Resonance (NMR), which
is a microscopic probe to magnetism, the magnetic-field-induced "exotic" phases, such as the Bose-Einstein condensate,
magnetization plateaus or spin-nematic phase.
Télécharger la fiche de l'offre
Photoluminescence properties of layered semiconductors under high pressure
Semiconducting materials with a layered structure have emerged recently as well-adapted platforms to implement flexible
optoelectronic devices and are of high interest for photovoltaic applications. Among them, perovskites have triggered a
particular interest because of their very efficient absorption/emission properties. We propose to investigate optical
properties of perovskites while changing the interlayer distance and effective coupling by applying high hydrostatic pressure.
Télécharger la fiche de l'offre
Superconducting nematic phases under stress
M1 - M2 level.
The proposed work consists in setting up a uniaxial pressure device, coupled to NMR measurements (a spectroscopic
method whose principle is analogous to medical MRI), in order to study novel electronic phenomena in high temperature
superconductors.
This Master internship will take place in a team of several researchers and will offer a wide range of opportunities: tests
and implementation of the pressure device, handling of cryogenic fluids and magnetic fields, NMR measurements, data
analysis
Télécharger la fiche de l'offre
Thermodynamic investigations of the Quantum Critical Point in CeRh(1-x)IrxIn5
In the series of CeRh(1-x)IrxIn5 at zero magnetic field, the antiferromagnetic order is suppressed at the Quantum Critical
Point corresponding to x_c = 0.6, while superconductivity emerges above x ~ 0.3. The objective is to investigate the interplay of different types of magnetic orders and superconductivity under ma gnetic field by means of specific heat measurements down to the lowest temperature (~300 mK) for various values of x.
Télécharger la fiche de l'offre
Tuning the van der Waals gap of layered materials with high pressures
We propose to use a diamond anvil cell to apply
high pressure on a layered material or heterostructure to finely tune the
interlayer distance and all the electronic/magnetic properties that are directly related to this par a mater. Pre s sure induced
changes will be probed at cryogenic temperature with opti cal techniques (photoluminescence, Raman scattering,
reflectivity)
Detailed
Télécharger la fiche de l'offre
PhD project
Ultrasound in Quantum Materials
Superconducting materials enable technologies that would otherwise be unfeasible or impossible, such as
medical Magnetic Resonance Image scanners, magnetic confinement in the ITER fusion reactor, and the
magnets directing charged particles at the CERN accelerators. The materials class with the best current
prospects for superconducting applications are the cuprates, which hold the record for highest ambient pressure
transition temperature (Tc)-about 150 K. Those materials also host one of the greatest enigma of modern
physics: the pseudogap phase. Determining the nature and origin of this mysterious phase is key to understand
the mechanism of high-Tc superconductivity.
Télécharger la fiche de l'offre